TRENDS IN ABUNDANCE OF NORTH ATLANTIC HUMPBACK WHALES IN THE GULF OF MAINE

Jooke Robbins ${ }^{1{ }^{1 *}}$ and Richard M. Pace, III 2
Center for Coastal Studies, 5 Holway Avenue, Provincetown, MA 02657-1036, U.S.A.
${ }^{2}$ Northeast Fisheries Science Center, 166 Water Street, Woods Hole, MA 02543-1026, U.S.A.
Contact: jrobbins@coastalstudies.org

Report to the Northeast Fisheries Science Center
National Marine Fisheries Service
166 Water Street
Woods Hole, MA 02543

In fulfillment of contract EE133F-17-SE-1320, Task I
Accepted 10 December 2018

TRENDS IN ABUNDANCE OF NORTH ATLANTIC HUMPBACK WHALES IN THE GULF

 OF MAINEJooke Robbins ${ }^{1 *}$ and Richard M. Pace, III 2
${ }^{1}$ Center for Coastal Studies, 5 Holway Avenue, Provincetown, MA 02657-1036, U.S.A.
${ }^{2}$ Northeast Fisheries Science Center, 166 Water Street, Woods Hole, MA 02543-1026, U.S.A. *Contact e-mail: jrobbins@coastalstudies.org

Abstract

The Gulf of Maine is the south-western most humpback whale feeding ground in the North Atlantic Ocean, and the primary area in U.S. waters. This population has been the subject of long-term photo-identification research since the late 1980s, but detailed studies of population size and trend have been limited. We used annual surveys across the primary Gulf of Maine feeding range and auxiliary data to estimate population size and growth from 2000 through 2016. A Bayesian state-space open population model accounting for demography and individual heterogeneity was implemented, and the results were compared to commonly used openpopulation mark-recapture models and Minimum Number Alive enumeration methods. The best estimate of 2016 abundance was 1,317 individuals (95% credible interval 1,278-1,350). Based on ancillary data, we have evidence that the population was likely never below 701 individuals during the study period, despite low abundances produced by the statistical models early in the time series. The results further suggest that this is a mature population that has exhibited relatively slow continued annual growth (geometric mean $=3.4 \%$) since 2009. These findings

from long-term population research significantly improve understanding of a Federally-protected species and its potential vulnerability to human impacts.

Key-words: Bayesian mark recapture, Megaptera novaeangliae, open population abundance, population growth, recovery, survival

Introduction

Humpback whales are seasonal migrants with maternally-mediated site fidelity. The Gulf of Maine, along the eastern boundary of the United States and Canada (Figure 1), is one of four discrete humpback whale feeding grounds in the North Atlantic Ocean (Stevick et al. 2006). This species feeds in the Gulf of Maine from March through December, but most individuals migrate in winter to the West Indies where they calve and mate with whales from other North Atlantic feeding grounds (Katona \& Beard 1990).

Humpback whales were historically depleted by commercial whaling and were listed as an Endangered Species in the U.S. for 45 years. Following a comprehensive status review (Bettridge et al. 2015), the U.S. National Marine Fisheries Service (NMFS) recognized 14 distinct population segments (DPS) of humpback whales globally. The comprehensive status review further determined that the West Indies DPS, including humpback whales that feed in the Gulf of Maine, was not in need of protection under the Endangered Species Act ${ }^{1}$. Nevertheless, the specific details of population size and trend in the North Atlantic, including within U.S.

[^0]waters, were uncertain (Bettridge et al. 2015), and although the West Indies DPS is broadly distributed across the North Atlantic in summer, local hazards and food resources may potentially produce different fecundity and mortality schedules across feeding areas. A Federal post-delisting monitoring plan was developed to address these data gaps and to detect adverse effects following the status change (NMFS 2016).

In addition to functioning as important predators within a productive marine ecosystem, humpback whales in the Gulf of Maine have been a key source of biological understanding of the species and the focus of an economically important tourism trade. However, the Gulf of Maine is an area of high human use and humpback whales feeding there have been subjected to a range of unintentional anthropogenic impacts (van der Hoop et al. 2013; Henry et al. 2017). The U.S. recognizes this humpback subpopulation as an important component of the Gulf of Maine ecosystem and has produced regular assessments of its population status (e.g., Hayes et al. 2018). Prior estimates of abundance for management purposes have been derived from line-transect surveys and, more recently, enumeration metrics, but neither have provided adequate data on population size or trends over time (Hayes et al. 2018). A recent study of North Atlantic right whales applied a Bayesian state-space mark-recapture statistical model that both improved population estimates and demonstrated a decline in abundance (Pace et al. 2017). We applied a similar estimation approach and other mark-recapture approaches to a long-term photoidentification data set to produce the first detailed time series of abundance and population growth for Gulf of Maine humpback whales.

Methods

Humpback whales can be individually identified from their natural markings, particularly the shape and ventral pigmentation pattern of the flukes (Katona \& Whitehead 1981) and dorsal fin characteristics (Katona \& Whitehead 1981; Gill \& Burton 1995; Blackmer et al. 2000). The Center for Coastal Studies (CCS, Provincetown, MA, USA) has studied individual humpback whales since the 1970s and maintains an extensive photo-identification catalog and life history database of the Gulf of Maine humpback whale population. We used encounter histories of individually-identified humpback whales from this long-term research to estimate population abundance and growth from 2000 to 2016.

The primary data came from annual photo-identification surveys of Gulf of Maine humpback whales across their primary feeding range from Nantucket, Massachusetts to Nova Scotia, Canada (Figure 1). Humpback whales simultaneously occupy a wide range of coastal and offshore areas within the Gulf of Maine and the Bay of Fundy during the summer, although the specific distribution across these areas varies over time in relation to prey availability (Payne et al. 1990; Weinrich et al. 1997). Vessel surveys therefore targeted as many of these humpback whale aggregation sites as possible each year to increase the likelihood that any member of the population had an opportunity to be sampled at least once. One notable exception was in 2011 when there was no coverage of the Canadian portion of the study area due to logistical issues.

Although this species can be encountered in the Gulf of Maine from March through December, survey data analyzed for this study were limited to the peak of the feeding season (June 22 through October 7). This period was selected because it excluded the shoulder seasons when: 1) the population was likely open to demographically staged migration (Robbins 2007), 2)
transients from other feeding grounds were most likely to be present (Katona \& Beard 1991) and 3) vessel survey effort was limited to the southwest Gulf of Maine.

For the purpose of mark-recapture statistical analyses, an individual was considered "marked" in the year that fluke photo-documentation was adequate to ensure its uniqueness in the population. Poorly documented animals were excluded from analysis because failure to consider the quality of identifying documentation can result in false negative matches and inflated abundance estimates (Friday et al. 2000; Stevick et al. 2001; Friday et al. 2008). In rare cases $(1 \%, \mathrm{n}=23)$, an individual was known to have been alive in an earlier year based on lower quality fluke documentation or secondary identification features. However, these earlier sightings were excluded in the survey data set to avoid an inadvertent upward bias in survival rates. We compressed all survey-based sightings of individual whales within a given year into a binary annual outcome (seen or not seen). The resulting matrix of annual sightings became the principal data used to estimate survival, recruitment, detection probabilities and hence abundance.

In addition to survey-based mark-recapture data, we used auxiliary data to inform the status of individuals, most notably for years prior to and after the study period. These data were based on vessel surveys conducted by CCS from autumn through spring, but also included information from a large network of opportunistic data contributors within the Gulf of Maine. The latter were primarily formal data collection programs aboard whale watching vessels operating coastally from Nantucket to Nova Scotia, but with a particular focus off the coast of Massachusetts. All images submitted to and processed by CCS were considered for inclusion in
the auxiliary data set. As in the case of vessel survey data, we only included individuals once they met the minimum photo-identification criteria of uniqueness in the population.

To further inform the modeling process we also used other information available from the Gulf of Maine humpback whale catalog, including individual sex, known birth year or year of first sighting and death year (if known). The sex of an individual was known from molecular genetic analysis of a skin sample (Palsbøll et al. 1992; Bérubé \& Palsbøll 1996a, b), observation of the genital slit (Glockner 1983) and/or a calving history in the case of females. Exact age was known for individuals that were first catalogued in their first year of life as dependent calves. Individuals were considered juvenile until they reached age 5, which is the earliest age at first calving although the average age is closer to nine years (Clapham 1992; Robbins 2007). Whales that were first encountered after the calf year were at least one year old at the time of first sighting, but could have been older. Prior research suggested that most, but not all, of the individuals in this class were still juvenile (Robbins 2007). Individuals were categorized as dead only if they were definitively matched to a carcass.

Most long-lived mammals exhibit variation in survival rates according to age and sex (Caughley 1966). Age data, in particular, are rarely available for whale populations, but such demographic trends have nevertheless been confirmed for well-studied populations (Fujiwara \& Caswell 2001; Ramp et al. 2010; Robbins et al. 2015; Pace et al. 2017), including this one (Barlow \& Clapham 1997; Robbins 2007). For statistical models, we discriminated five juvenile age categories in light of previously documented age-specific survival rates: 0 (dependent calf), 1 (independent yearling), 2, 3 and 4 years. Animals known to be at least five years were grouped into a single adult class (5+). Statistical models also treated animals of unknown age at entry as
age $5+$. Although prior analyses suggested that they were likely younger than 5+ (Robbins 2007), their exact age was not known and a few may have been adults. Attempting to place these individuals into discrete juvenile age classes was likely to inflate those survival rates and artificially increase population size. We therefore took a precautionary approach and placed them in the substantially larger adult sample, recognizing that doing so might depress estimates of adult survival slightly (with a concomitant slight downward bias in abundance).

Analytical methods

We used several approaches to estimate the abundance and growth of humpback whales in the Gulf of Maine in light of population characteristics and available data, as described below.

1) Minimum Number Alive

The Minimum Number Alive (MNA) can be calculated as the count of individuals known to be alive in a year, because they were either seen in that year or seen both before and after that year (Krebs 1966). This metric is likely to under-estimate true population size because it misses animals that are alive but not yet cataloged, as well as catalogued animals that are still alive but not re-sighted during the study period. It is also known to be particularly vulnerable to underestimation in the early and late portions of a data series (Hilborn et al. 1976; Efford 1992; Pocock et al. 2004). Nevertheless, a reasonable estimate of minimum population size can be useful in some management contexts, such as in the calculation of Potential Biological Removal (Wade 1998). MNA has the potential to provide such information for Gulf of Maine humpback whales because this species is long lived and because there has been considerable directed and
opportunistic effort to document individuals each year. Consequently, this simple accounting procedure has informed resource management in the past (e.g., Waring et al. 2015; Waring et al. 2016).

We calculated three MNA metrics annually from 2000 through 2016 to compare to markrecapture statistical abundance estimates. MNA-Survey was based exclusively on the dedicated survey encounter data. MNA-Survey+ included only individuals seen at least once in the dedicated survey but used all available information to determine their status in a given year. MNA-All was calculated using all available sightings of Gulf of Maine humpback whales. Calves were included even if they were not adequately marked because they were known to be individuals by association with their uniquely marked mother, even if they could not be reliably recognized in subsequent years. When auxiliary data were added to the survey data, they included re-sightings through 2017 to minimize, but not eliminate, bias in the last interval. These simple enumerations of minimum population size were plotted against statistical estimates of abundance. We also calculated the age and sex composition of the largest MNA estimates for comparison to survey data.

2) Jolly-Seber open-population mark-recapture model

We used open population mark-recapture models to estimate abundance in light of the fact that individuals were not seen in all years and did not necessarily survive from one sampling period to the next. As an initial approach, we first calculated abundance using a Jolly-Seber (J-S) model (Jolly 1965; Seber 1965) without accounting for age, sex or individual heterogeneity.

Calculations were performed using Program R (R Development Core Team 2012) package
"Rcapture" (Rivest \& Baillargeon 2014) under both unrestricted capture rates and time invariant capture rates. Open-population mark-recapture models make assumptions of capture and survival probability homogeneity among individuals, which is often extended to groups in more complex models (Williams et al. 2002). However, as noted previously, prior mark-recapture studies of this population have shown that survival varies by age and sex, that effort and success of re-sighting whales varies over time and that capture probabilities are heterogeneous across individuals (Robbins 2007; Ford et al. 2012). It is rarely the case that both sex and age data are systematically available for whale populations and the most recent prior estimates for both the Gulf of Maine and the North Atlantic have not used such data (Clapham et al. 2003; Stevick et al. 2003). We were therefore interested to determine how simple J-S approaches omitting likely important group heterogeneity in survival and capture processes would compare to MNA as well as more robust estimation techniques.
3) Bayesian state-space models

We implemented a mark-recapture statistical modeling approach similar to one recently employed to assess population abundance trends in North Atlantic right whales (Pace et al. 2017). Re-sighting histories of known individuals were used to estimate survival rates and abundance in a Bayesian, state-space formulation estimated using Markov Chain Monte Carlo (MCMC) simulation. Specifically, we modified the approaches of Kéry and Schaub (2011) and Royle and Dorazio (2012) to produce a multi-state formulation which relied on J-S model ideas of estimating the probability of new member entry but executed it in a Bayesian framework together with data augmentation. We separated the likelihoods associated with state transition or
biological process from that of the observation process. The biological states modeled were: 1) not yet entered into the population, 2) alive and 3) dead. The 2 observed states were seen or not seen. All other values in the state matrix were coded as unknown (NA). States were also informed by auxiliary information. For example, an animal known to have been alive in 1995 but was not seen in the survey until 2002, it was coded as alive in 2000 and 2001. If an animal was of unknown age when first seen in the survey, its states in the data matrix prior to the year first seen were treated as unknown. To estimate probability of entry in the population, which is a necessary parameter for the derivation of abundance estimates, we augmented the capture histories with 300 histories that represent animals never seen, but that could enter the population and still never be seen based on estimated capture, survival and entry probabilities (Royle \& Dorazio 2012).

We used logistic relationships with linear combinations of predictors (Lebreton et al. 1992) to estimate survival and capture probabilities while accounting for sources of heterogeneity. In the main model, survival probability was modeled as:

$$
\operatorname{Logit}\left(\Phi_{\mathrm{i}, \mathrm{t}}\right)=\boldsymbol{\beta}_{1}+\boldsymbol{\beta}_{2} *\left(1-\text { sex }_{\mathrm{i}}\right) * \text { Adult }_{\mathrm{i}, \mathrm{t}}+\boldsymbol{\beta}\left[\text { Age }_{\mathrm{i}, \mathrm{t}}\right]+\varepsilon_{\mathrm{t}}
$$

Where: $\phi_{i, t}$ is survival of probability of the $\mathrm{i}^{\text {th }}$ individual for the $\mathrm{t}^{\text {th }}$ interval, β_{1} is the intercept whose value in the logit is the mean of calf survival, β_{2} is the added effect of being a female >4 years old on survival, sex ${ }_{i}$ is a data value of 0 for female, 1 for male and NA for unknown, Adult $\mathrm{t}_{\mathrm{i}, \mathrm{t}}$ is a data value of 1 if the $\mathrm{i}^{\text {th }}$ animal is classed as age >4 in the $\mathrm{t}^{\text {th }}$ interval, $\beta\left[\right.$ Age $\left._{\mathrm{i}, \mathrm{t}}\right]$ is a set of factors for each age group $1,2,3,4$ and 5, Age $_{i, t}$ is an index representing an age value ranging from $1-5$ for the $i^{\text {th }}$ individual at time interval t , and ε_{t} is the random effect of year on survival.

Similarly, we modeled capture probability as:

$$
\operatorname{Logit}\left(\mathbf{P}_{\mathrm{i}, \mathrm{t}}\right)=\alpha_{1}+\alpha_{2} *\left(\operatorname{sex}_{\mathrm{i}}\right)+\alpha_{3} *\left(1-\text { Adult }_{\mathrm{i}, \mathrm{t}}\right)+\operatorname{Time}_{\mathrm{t}}+\zeta_{\mathrm{i}}
$$

Where: α_{1} was the intercept and hence the effect of being a female on capture probability, α_{2} was the added effect of being a male on capture probability, α_{3} was the added effect of being a juvenile on capture probability, Time ${ }_{t}$ was the linear effect of the year t on average capture probability with $\mathrm{Time}_{\mathrm{t}}=2000$ was 0 , and ζ_{i} was the random effect of the $\mathrm{i}^{\text {th }}$ individual on capture probability.

For estimation, we assigned vague priors on all linear logistic terms except the random coefficients ε_{t} and ζ_{t}, as uniform(-10,10). Random coefficients ε_{t} and ζ_{i} were given normal $(0, \delta)$ and normal $(0, \sigma)$ priors, respectively. Standard deviation terms δ and σ were given vague priors of uniform $(0.001,10)$. The probability of entry into the population, $\gamma \mathrm{t}$, was allowed to vary among time intervals, and each γ_{t} was assigned a uniform $(0,1)$ prior. Transitions among states (not yet entered, alive or dead) were modeled as a discrete categorical random variable dependent on the prior state according to the following probabilities:

State	Not entered	Alive	Dead
Not entered	$1-\gamma_{\mathrm{t}}$	γ_{t}	0
alive	0	$\phi_{\mathrm{i}, \mathrm{t}}$	$1-\phi \mathrm{i}, \mathrm{t}$
dead	0	0	1

The observed data (seen or not seen) were considered dependent on the animal's state and were modeled as Bernoulli($\mathrm{p}[\mathrm{s}])$ according to the following:

State	Seen	Not Seen
Not entered	0	1
Alive	$\mathrm{P}_{\mathrm{i}, \mathrm{t}}$	$1-\mathrm{P}_{\mathrm{i}, \mathrm{t}}$
Dead	0	1

Finally, missing data on the sex of individual whales was modeled as $\operatorname{Bernoulli}(\rho)$, where ρ was given a somewhat informative beta(5,5). Using the above structure, data were modeled using program JAGS (Version 4.0.0) MCMC simulator (Plummer 2003) accessed via Program R (R Core Team 2012) and package "run.jags" (Version 2.0.2-8, Denwood 2016). When dealing with model parameters in all simulation exercises, we provided random starting values from within the range of the prior for that parameter. Covariates concomitant with capture histories in the data augmentation set were unknown for sex and age $=5$ and adult $=1$ adult for age class. We provided initial values for unknown states (state.initij ${ }_{\mathrm{ij}}$) which were state. $\mathrm{init}_{\mathrm{ij}}=1$ prior to the first year seen and state. $\mathrm{init}_{\mathrm{ij}}=3$ after the last year seen, and a value of 1 for all animals in the augmentation set of capture histories. Unknown sexes were assigned a Bernoulli(0.5) random initial value. We used an adaptation + burn in phase of 5,000 iterations and sample size of 20,000 iterations for estimation. JAGS code for the primary model is provided in Appendix I. In all cases, to determine when the algorithms had converged, we used three chains and computed the Gelman-Rubin convergence statistic, which we required to be <1.1 for all model parameters (Gelman \& Rubin 1992).

In addition to the primary model defined above, we fit 3 other models of covariate structure to these data:

1. Time as a fixed factor deterministic covariate to predict survival with all other structure unchanged from the primary model;
2. Age as a fixed factor covariate to predict survival with all other structure unchanged from the primary model; and
3. The random factor ζ_{i} deleted from the estimation of capture probability with all other structure unchanged from the primary model.

Population growth rate

Population growth was estimated from the Bayesian state-space model as described by Pace et al. (2017). Specifically, it was calculated for each time step as $\mathrm{Nt}+1 / \mathrm{Nt}$, where the values selected for Nt were the median values among the MCMC chains.

Results

Analyses were based on capture histories of 1,612 individuals identified during population surveys. The sample included 608 females, 648 males and 356 animals of unknown sex. A total of 544 animals had been identified and cataloged prior to the start of the study in 2000 and 601 individuals were known to have been born during the study period. The remaining 467 animals entered the study after 1999 at an unknown time after birth.

The whales identified through surveys represented 71.6% of the 2,252 adequately marked individuals detected alive at least once by any source during the same span of years. The vast majority of the whales that were missed by surveys were only seen by other sources in one or two years $(89.5 \%, \mathrm{n}=573)$. The 24 individuals that were seen outside of survey effort in four
years or more were predominantly present in the shoulder seasons, but not exclusively. Only $1.6 \%(\mathrm{n}=37)$ of catalogued individuals were known to have died during the study period, although this under-estimates mortality because not all deaths were necessarily documented or individually-identifiable due to decomposition. Females were slightly favored in each annual survey sample (1.09:1). As shown in Figure 2, the majority of each annual survey sample was mature (mean=70.7\%) and ranged from 57.4\% (2009 and 2010) to 85.6% (2013).

Minimum Number Alive

Each calculation of Minimum Number Alive in the Gulf of Maine increased the more auxiliary observations were included, such that MNA-All $>$ MNA-Survey $+>$ MNA-Survey (Table 1; Figure 3). All annual estimates also continued to increase as more time was allowed to elapse from the base year. Thus, the greatest change was for 2000, which increased by $43.8 \%(\mathrm{n}=295$, MNA-All $)$ between the base year and 2017. For all MNA estimates, the largest count was in the middle of the study period, preceded by an upward trend in the early series and followed by a downward trend in the later series (Figure 3). Based on the most inclusive estimate (MNA-All), the population was never below its starting minimum abundance of 701 individuals in 2000. Furthermore, the highest MNA estimate suggests that there were no fewer than 1,021 individuals
alive in 2009. Like the survey data, mature whales dominated each annual sample (Figure 2), ranging from 60.8% (2009) to 83.7% (2013).

Abundance models

The simple J-S model produced abundance estimates that mirrored the temporal trends of MNA series estimates (Figure 3). Specifically, they suggested increasing abundance in the early portion of the study, with a peak in 2009 followed by population decline. The J-S estimates also tended to be biased low, with 95% confidence intervals often falling below MNA estimates (Figure 3). This pattern was most notable in the early and late periods when even MNA estimates are expected to be biased downward. This naïve model also suggested relatively low and imprecise survival rates with overlapping confidence intervals for most years (Figure 4), at least in part a likely consequence of a failure to account for group heterogeneity in survival.

The primary multi-state Bayesian mark-recapture model employed here had excellent convergence statistics as judged by the computed Gelman-Rubin convergence statistics (Appendix I) and posterior distributions for all linear (logistic) parameters associated with time. Sex and age covariates contributed significantly (i.e., were distinct from zero) to estimates of survival and capture probability (Appendix I). Adults had significantly higher survival rates that were also more precise and less temporally variable than calf survival (Figure 5).

Abundance estimates from the state-space model ranged from 286 (95% credibility interval 250-325) in 2000 to 1,317 (95% credibility interval 1,278-1,350) in 2016 (Figure 6). These estimates were considerably more precise than those generated by the simple J-S markrecapture model and exceeded the lowest MNA counts (MNA-Survey) in all years. They also met
or exceeded the more inclusive lower population bounds, MNA-Survey+ and MNA-All, from 2006 onwards (Table 1). However, the early estimates (2000-2002, in particular) were lower than the minimum number of whales known to be alive in the population and the cause of these under-estimates is unclear. State-space model estimates suggested a pattern of increase across most of the study period, with the exception of 2004-2006 and 2011-2013. Both of these periods involved years of lower apparent calf survival (Figure 5) and ended with the lowest annually estimated fraction of juveniles (2006 and 2013-14, Figure 2). However, abundance and survival were predicted to have increased at the end of the study period when both MNA metrics and simple J-S models indicated population decline (Figure 3).

By estimating the unknown sexes as part of the model, we were able to separately estimate male and female abundance (Figure 7). Male abundance was consistently greater than female abundance and this difference increased over time. The model included a parameter to account possible differences in survival between male and female adults and these estimates indicated that females survived at a lower rate.

Population growth rate

Annual population growth was estimated to be positive in all but three years of the study (20112013, Figure 8). However, estimates for the first three years exceeded biologically plausible rates for in situ growth in this species (11.8\%, Zerbini et al. 2010) and corresponded to a sequence of abundance estimates that considerably under-performed relative to MNA. Excluding those initial values, the geometric mean population growth from 2004-2016 was 1.05. This mean was largely driven by three years of peak growth ending in 2008, two years of which
also slightly exceeded plausible growth rates. Since 2009, the geometric mean population growth rate has averaged 1.03.

Discussion

This study provides the longest and most precise time series of abundance for humpback whales that feed in the Gulf of Maine. It was based on 17 years of directed vessel survey effort spanning the primary feeding range, and informed by 40 years of long-term population monitoring and data from a large, opportunistic data collection network. This research also utilized sophisticated mark-recapture statistical approaches to specifically account for potential sources of heterogeneity and to provide the best information in light of uncertainty. The results suggest a mature population that has likely nearly doubled in the past decade and continues to exhibit relatively slow growth in recent years. These findings significantly improve understanding of a Federally-protected species and its potential vulnerability to human impacts.

Three methodological approaches were used to estimate abundance from photoidentification data. The Bayesian state space mark-recapture model was similar to the approach recently used to better understand the abundance and trend of the endangered North Atlantic right whale (Pace et al. 2017). Here, our model provided the most precise estimates that were also the most plausible for the second half of the study period. By contrast, a simple J-S model failing to account for age, sex and heterogeneity often failed to match even the minimum known number of whales known to be alive in the population. Simple models are often used in whale research because detailed data on individuals is often lacking. Prior studies on humpbacks and other species in the Gulf of Maine indicate the importance of accounting for sex, age and
heterogeneity (Hammond 1990; Robbins 2007; Ford et al. 2012; Robbins et al. 2015; Pace et al. 2017), and our results suggest significant loss in precision and potentially bias in simple open population estimates. An important consideration for those that might consider mark-recapture estimates of abundance for humpbacks on a feeding ground is the apparent importance of individual variability in capture probability. In this study, consider that the parameter as displayed in the state-space model is an additive term in a logit model, and its influence on individual capture probability varies depending on the group mean proximity to 0.5 . The posterior distribution of the median standard deviation of the random effect of individual catchability (in the logistic) was 1.238 (95% credible interval: $1.176-1.300$). Based on the median estimate and a group mean of at 30% capture probability, catchability among 95% of the individuals in that group could range from 0.05 to 0.76 . Such a large range suggests likely violation of assumptions of group capture homogeneity in any simple mark-recapture model.

The Minimum Number Alive has previously informed the management of this population, as it is a precise minimum of population size required for calculations of Potential Biological Removal (Wade 1998). While true population size cannot be lower than the MNA, it may be substantially higher. In this study, there was considerable effort to detect humpback whales opportunistically, as well as through dedicated surveys, and so MNA provided a valuable baseline for understanding the performance of the statistical models. It provided particular insight into minimum abundance in the early years of the study, which were under-estimated by both the Bayesian state space and the simple J-S models. The use of three forms of MNA also demonstrated how inference improves with the inclusion of more data. However, MNA is not a reliable metric for time-sensitive population monitoring or for population trend because it relies
upon sampling effort in prior and subsequent years to counter the incomplete detection probabilities of individuals. In our study, annual counts continued to increase across the study period, by as much as 43%, based on detections made after the base year. Yet, even after many years, these counts were likely incomplete to an unknown degree and also biased in that individuals and groups with lower survival rates are less likely to ever be accounted for. The downward bias in the second half of the series is a known issue with this population metric (Pocock et al. 2004), and worsens with long-lived animals and low capture probabilities.

The Bayesian state-space model estimate for 2011 ($\mathrm{N}=1,17595 \%$ credibility interval 1,143-1,206) was substantially higher and more precise than the line-transect estimate most recently used for population management $(\mathrm{N}=335, \mathrm{CV}=0.42$, 2011, Hayes et al. 2018). Our results also update the last used MNA estimate (Hayes et al. 2018), derived earlier from this research, from 823 to 969 in 2008. The most recent abundance estimate for the Gulf of Maine using mark-recapture statistical techniques was based on the YONAH project in 1992-1993 and indicated an abundance of $652(\mathrm{CV}=0.29)$ (Clapham et al. 2003). That published estimate approaches the lowest possible size of the population at the start of this study seven years later (701, MNA-All). Our statistical models unfortunately provide limited insight into true abundance at the start of the study period. However, available data suggests that there may have been relatively little net population growth in the preceding decade. The Clapham et al. (2003) study estimated the population growth rate as 1.00 (for a calf survival rate of 0.51) or 1.04 (assuming 0.875), and the lower of the two calf survival rates was later determined to be more plausible for the study period Robbins (2007). Both estimates were significantly lower than the mean population growth rate estimated for the years 1979 through 1991 (1.065, Clapham et al. 2003),
during which time the overall West Indies DPS was thought to be growing more slowly (3.1%, 1979-1993, Stevick et al. 2003).

Our results suggest that the population was growing throughout most of the study period, albeit relatively slowly in most years. This is consistent with the relatively small juvenile component detected in the population throughout the study. However, there appear to have been two periods of slower growth or decline, the first around 2006 and the second from 2011-2013. Model-based estimates of population growth rate, abundance estimates and calf survival are inter-related but these periods correspond to years with the lowest frequency of juveniles of the population. Nevertheless, the cause of these potential demographic events is not clear. There have been three Unusual Mortality Events (UME) ${ }^{2}$ involving humpback whales during the period of this study. The first two (in 2003 and 2005) occurred during a period in which our modelbased estimates are least informative. The latest and largest UME is on-going since 2016, and any effects would not yet be reflected in these estimates. In the latter case, the majority of detected carcasses have thus far been found south of the Gulf of Maine. Continued population research may help to determine the degree of impact on humpback whales in the Gulf of Maine.

Our results are notable in relation to a comparable study recently conducted on North Atlantic right whales (Pace et al. 2017). The finding of lower survival and abundance of adult females is that study was also found here, where it was consistent with previous evidence of sexstratified adult survival in this population (Robbins 2007). The latter research found that
${ }^{2} \mathrm{https}: / / \mathrm{www} . f i s h e r i e s . n o a a . g o v / n a t i o n a l / m a r i n e-l i f e-d i s t r e s s / 2016-2018-h u m p b a c k-w h a l e-u n u s u a l-~$ mortality-event-along-atlantic-coast
survival among adult female humpback whales in the Gulf of Maine was specifically lower in the interval after calving, suggesting a cost of reproduction. The only other sex-stratified survival estimate for this species comes from another North Atlantic population in the Gulf of St. Lawrence, Canada in which male survival was found to be lower than female survival (Ramp et al. 2010). However, females in that study area also have a lower average calving interval than females in the Gulf of Maine (Ramp 2008). This cautions against assuming species-level patterns in survival or fecundity principles from a single population, or extrapolating vital rates to populations with potentially different ecological conditions and hazards.

Overall, our results suggest a mature population that is still growing following its status change under the Endangered Species Act, and despite well-documented human impacts. They highlight the value of long-term humpback whale population research for effective management and conservation.

Acknowledgments

These data were available thanks to long-term humpback whale population research by the Center for Coastal Studies. The authors particularly thank David Mattila, Phil Clapham, Scott Landry, Jenn Tackaberry, Amy Kennedy, Christie McMillan, Pauline Kamath, Theresa Kirchner, Carole Carlson and Lisa Baraff for their contributions to this research. Per Palsbøll and Martine Bérubé conducted molecular genetic sex determinations. We also thank the following collaborators in the Gulf of Maine for sharing supplemental life history and sighting data to the Gulf of Maine Humpback Whale Catalog: 7 Seas Whale Watch, Blue Ocean Society, Bar Harbor Whale Watch, Boston Harbor Cruises, Brier Island Whale and Seabird Cruises, Cape Ann Whale

Watch, Coastal Research and Education Society of Long Island, Dolphin Fleet Whale Watch, Grand Manan Whale and Seabird Research Station, Hyannis Whale Watcher Cruises, New England Aquarium, New England Coastal Wildlife Alliance, Newburyport Whale Watch, Quoddy Link Marine, Whale and Dolphin Conservation, the Whale Center of New England and others. The Northeast and Southeast Marine Mammal Stranding Networks provided photographs used to identify catalogued whales after death. Analyses were supported by the NMFS Northeast Fisheries Science Center (EE133F-17-SE-1320).

Year	MNA-Survey	MNA-Survey +	MNA-All	Simple J-S	J-S State Space
2000	171	573	701	-	286
2001	233	583	701	438	385
2002	338	641	805	601	516
2003	507	705	822	663	681
2004	516	708	828	813	747
2005	553	715	810	706	772
2006	551	694	784	672	783
2007	621	750	868	795	889
2008	698	830	969	922	1015
2009	698	853	1021	966	1126
2010	721	885	1016	923	1196
2011	625	800	939	822	1175
2012	608	769	899	737	1168
2013	570	749	829	699	1126
2014	562	751	859	776	1181
2015	601	779	942	720	1281
2016	345	572	808	-	1317

Figure 1: Humpback whale sightings from annual vessel surveys in the Gulf of Maine, 20002016. Black circles represent the first sighting per identified individual per year, June 22 through October 7.

Figure 2: Annual age class composition of the MNA-All sample (stacked bars) and the percentage of known and suspected juveniles in the survey data (line).

Figure 4: Survival estimates for 2000-2016, generated from the Jolly-Seber mark-recapture model. The model assumed capture probabilities as time-varying (open black circles) or constant (open blue circles). Error bars represent the 95% confidence interval.

Figure 5: Apparent survival of adult females (black circles) and calves of both sexes (blue circles) in the Gulf of Maine from 2000 through 2016. Error bars are posterior medians from a Bayesian mark-recapture model allowing random fluctuation among years, age effects and adult female effects on survival, as well as sex and time effects and random effects of individual catchability on capture probabilities together with their 95% critical regions

Figure 6: Annual abundance of Gulf of Maine humpback whales calculated by four procedures. Solid circles with error bars are posterior medians from a Bayesian mark recapture model allowing random fluctuation among years, age effects and adult female effects on survival, as well as sex and time effects and random effects of individual catchability on capture probabilities together with their 95% critical regions. Minimum number alive (MNA) estimates are dashed lines with diamonds (MNA-Study), triangles (MNA-Study+) and squares (MNA-All).

Figure 7. Total and sex-specific abundance of Gulf of Maine humpback whales from 2000 through 2016. Circles with error bars are posterior medians from a Bayesian markrecapture model allowing random fluctuation among years, age effects and adult female effects on survival, as well as sex and time effects and random effects of individual catchability on capture probabilities together with their 95% critical regions.

Figure 8: Annual estimates of population growth of the Gulf of Maine humpback whale population, 2000-2014 derived from the Bayesian state-space model. Estimates for 2001-2003 substantially exceed the 11.8% maximum plausible rate of in situ annual population growth (Zerbini et al. 2010).

References cited:

Barlow J, Clapham PJ. 1997. A new birth-interval approach to estimating demographic parameters of humpback whales. Ecology 78:535-546.
Bérubé M, Palsbøll PJ. 1996a. Identification of sex in cetaceans by multiplexing with three ZFX and ZFY specific primers. Molecular Ecology 5:283-287.
Bérubé M, Palsbøll PJ. 1996b. Identification of sex in cetaceans by multiplexing with three ZFX and ZFY specific primers: erratum. Molecular Ecology 5:602.

Bettridge S, Baker CS, Barlow J, Clapham PJ, Ford M, Gouveia D, Mattila DK, Pace RM, Rosel PE, Silber GK, Wade PR. 2015. Status review of the humpback whale (Megaptera novaeangliae) under the Endangered Species Act. NOAA Technical Memorandum. NOAA-TM-NMFS-SWFSC-540.

Blackmer AL, Anderson SK, Weinrich MT. 2000. Temporal variability in features used to photoidentify humpback whales (Megaptera novaeangliae). Marine Mammal Science 16:338354.

Caughley G. 1966. Mortality patterns in mammals. Ecology 47:906-918.
Clapham PJ. 1992. Age at attainment of sexual maturity in humpback whales, Megaptera novaeangliae. Canadian Journal of Zoology 70:1470-1472.

Clapham PJ, Barlow J, Bessinger M, Cole T, Mattila D, Pace R, Palka D, Robbins J, Seton R. 2003. Abundance and demographic parameters of humpback whales from the Gulf of Maine, and stock definition relative to the Scotian Shelf. Journal of Cetacean Research and Management 5:13-22.
Denwood MJ. 2016. runjags: An R Package Providing Interface Utilities, Model Templates, Parallel Computing Methods and Additional Distributions for MCMC Models in JAGS. Journal of Statistical Software 71:1-25.

Efford M. 1992. Comment - Revised estimates of the bias in ' minimum number alive' estimator. Canadian Journal of Zoology 70:628-631.

Ford J, Bravington M, Robbins J. 2012. Incorporating individual variability into mark recapture models. Methods in Ecology and Evolution 3:1047-1054.

Friday N, Smith TD, Stevick PT, Allen J. 2000. Measurement of photographic quality and individual distinctiveness for the photographic identification of humpback whales, Megaptera novaeangliae. Marine Mammal Science 16:355-374.

Friday NA, Smith TD, Stevick PT, Allen J, Fernald T. 2008. Balancing bias and precision in capture-recapture estimates of abundance. Marine Mammal Science 24:253-275.

Fujiwara M, Caswell H. 2001. Demography of the endangered North Atlantic right whale. Nature 414:537-541.

Gelman A, Rubin DB. 1992. Inference from Iterative Simulation Using Multiple Sequences. Statist. Sci. 7:457-472.

Gill PC, Burton CLK. 1995. Photographic resight of a humpback whale between western Australia and Antarctic Area IV. Marine Mammal Science 11:96-100.
Glockner DA. 1983. Determining the sex of humpback whales in their natural environment. Pages 447-464 in Payne R, editor. Communication and Behavior of Whales. AAAS Selected Symposium 76. Westview Press, Colorado.

Hammond PS. 1990. Heterogeneity in the Gulf of Maine? Estimating population size from individual recognition data when capture probabilities are not equal. Reports of the International Whaling Commission (special issue) 12:135-139.

Hayes S, Josephson E, Maze-Foley K, Rosel P, Byrd B, Chavez-Rosales S, Cole T, Engleby L, Garrison L, Hatch J, Henry A, Horstman S, Litz J, Lyssikatos M, Mullin K, Orphanides C, Pace R, Palka D, Soldevilla M, Wenzel F. 2018. US Atlantic and Gulf of Mexico Marine Mammal Stock Assessments - 2017. NOAA Tech Memo NMFS NE-245; 371 p. .

Henry AH, Cole TVN, Garron M, Ledwell W, Morin D, Reid A. 2017. Serious injury and mortality determinations for baleen whale stocks along the Gulf of Mexico, United States East Coast, and Atlantic Canadian Provinces, 2011-2015. US Dept Commer, Northeast Fish Sci Cent Ref Doc. 17-19; 57 p.
Hilborn R, Redfield JA, Krebs CJ. 1976. On the reliability of enumeration for mark and recapture census of voles. Canadian Journal of Zoology 54:1019-1024.

Jolly GM. 1965. Explicit estimates from capture-recapture data with both death and immigration stochastic model. Biometrika 52:225-247.

Katona SK, Beard JA. 1990. Population size, migrations and feeding aggregations of the humpback whale Megaptera novaeangliae in the western North Atlantic Ocean. Reports of the International Whaling Commission (special issue) 12:295-305.

Katona SK, Beard JA. 1991. Humpback whales, Megaptera novaeangliae, in the western North Atlantic ocean. Memoirs of the Queensland Museum 30:307-321.

Katona SK, Whitehead HP. 1981. Identifying humpback whales using their natural markings. Polar Record 20:439-444.

Kéry M, Schaub M 2011. Bayesian population analysis using Winbugs: a hierarchical perspective. Academic Press, New York.

Krebs CJ. 1966. Demographic changes in fluctuating populations of Microtus californicus. Ecological Monographs 36:239-273.

Lebreton JD, Burnham KP, Clobert J, Anderson DR. 1992. Modeling survival and testing biological hypotheses using marked animals - a unified approach with case-studies. Ecological Monographs 62:67-118.

NMFS. 2016. Post-Delisting Monitoring Plan for Nine Distinct Population Segments of the Humpback Whale (Megaptera novaeangliae) - DRAFT. National Marine Fisheries Service OoPR, Silver Spring, MD.
Pace RM, Corkeron PJ, Kraus SD. 2017. State-space mark-recapture estimates reveal a recent decline in abundance of North Atlantic right whales. Ecology and Evolution 7:87308741.

Palsbøll PJ, Vader A, Bakke I, El-Gewely MR. 1992. Determination of gender in cetaceans by the polymerase chain reaction. Canadian Journal of Zoology 70:2166-2170.
Payne PM, Wiley DN, Young SB, Pittman S, Clapham PJ, Jossi JW. 1990. Recent fluctuations in the abundance of baleen whales in the southern Gulf of Maine in relation to changes in selective prey. Fishery Bulletin 88:687-696.

Plummer M. 2003. JAGS : a program for analysis of Bayesian graphical models using Gibbs sampling. . Proceedings of the 3rd International Workshop on Distributed Statistical

Computing (DSC 2003) pp: 20-22 http://www.ci.tuwien.ac.at/Conferences/DSC2003/Drafts/Plummer.pdf.

Pocock MJO, Frantz AC, Cowan DP, White PCL, Searle JB. 2004. Tapering Bias Inherent in Minimum Number Alive (MNA) Population Indices. Journal of Mammalogy 85:959-962.

R Core Team. 2012. R: A language and environment for statistical computing. R Foundation for Statistical Computing. ISBN 3-900051-07-0, URL http://www.R-project.org/, Vienna, Austria.

R Development Core Team. 2012. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.

Ramp C 2008. Population Dynamics and Social Organisation of Humpback Whales (Megaptera novaeangliae) - a Long-term Study in the Gulf of St. Lawrence, Canada.

Ramp C, Berube M, Palsboll P, Hagen W, Sears R. 2010. Sex-specific survival in the humpback whale Megaptera novaeangliae in the Gulf of St. Lawrence, Canada. Marine Ecology Progress Series 400:267-276.
Rivest L-P, Baillargeon S. 2014. Rcapture: Loglinear Models for Capture-Recapture Experiments.

Robbins J. 2007. Structure and dynamics of the Gulf of Maine humpback whale population. Ph.D. thesis. University of St. Andrews, St Andrews, Scotland.
Robbins J, Knowlton AK, Landry S. 2015. Apparent survival of North Atlantic right whales after entanglement in fishing gear. Biological Conservation 191:421-427.

Royle JA, Dorazio RM. 2012. Parameter-expanded data augmentation for Bayesian analysis of capture-recapture models. J. Ornithology 152:S521-S537.

Seber GAF. 1965. A note on the multiple recapture census. Biometrika 52:249-259.
Stevick PT, Allen J, Clapham PJ, Friday N, Katona S, Larsen F, Lien J, Mattila D, Palsbøll PJ, Sigurjønsson J, Smith TD, Øien N, Hammond PS. 2003. North Atlantic humpback whale abundance and rate of increase four decades after protection from whaling. Marine Ecology-Progress Series 258:263-273.

Stevick PT, Allen J, Clapham PJ, Katona SK, Larsen F, Lien J, Mattila DK, Palsbøll PJ, Sears R, Sigurjønsson J, Smith TD, Vikingsson G, Øien N, Hammond PS. 2006. Population spatial structuring on the feeding grounds in North Atlantic humpback whales. Journal of Zoology 270:244-255.

Stevick PT, Palsboll PJ, Smith TD, Bravington MV, Hammond PS. 2001. Errors in identification using natural markings: rates, sources, and effects on capture-recapture estimates of abundance. Canadian Journal of Fisheries and Aquatic Sciences 58:1861-1870.
van der Hoop JM, Moore MJ, Barco SG, Cole TVN, Daoust P-Y, Henry AG, McAlpine DF, Mclellan WA, Wimmer T, Solow AR. 2013. Assessment of Management to Mitigate Anthropogenic Effects on Large Whales. Conservation Biology 27:121-133.

Wade PR. 1998. Calculating limits to the allowable human-caused mortality of cetaceans and pinnipeds. Marine Mammal Science 14:1-37.
Waring GT, Josephson E, Maze-Foley K, Rosel PE, editors. 2015. U.S. Atlantic and Gulf of Mexico marine mammal stock assessments - 2014, NOAA Tech Memo NMFS NE 231; 361 p.
Waring GT, Josephson E, Maze-Foley K, Rosel PE, editors. 2016. U.S. Atlantic and Gulf of Mexico Marine Mammal Stock Assessments - 2015, NOAA Tech Memo NMFS NE 238; 501 p. Available from: National Marine Fisheries Service, 166 Water Street, Woods Hole, MA 02543-1026, or online at http://www.nefsc.noaa.gov/publications/.

Weinrich MT, Martin M, Griffiths R, Bove J, Schilling M. 1997. A shift in distribution of humpback whales, Megaptera novaeangliae, in response to prey in the southern Gulf of Maine. Fishery Bulletin 95:826-836.
Williams BK, Nichols JD, Conroy MJ 2002. Analysis and management of animal populations. Academic Press, San Diego.

Zerbini AN, Clapham PJ, Wade PR. 2010. Assessing plausible rates of population growth in humpback whales from life-history data. Marine Biology 157:1225-1236.

```
Appendix I
\(J A G S\) Code used to produce J-S state space abundance estimates
```

```
###### Made to run in r package runjags #####
```


Made to run in r package runjags

Parameters:

Parameters:

phi: survival probability

phi: survival probability

gamma: removal entry probability

gamma: removal entry probability

p: capture probability

p: capture probability

\#-
\#-

States (S):

States (S):

1 not yet entered

1 not yet entered

2 alive

2 alive

3 dead

3 dead

1 seen

1 seen

2 not seen
2 not seen

Full age model where intercept is for female calves, effects for age=1, age=2, age=3, all

Full age model where intercept is for female calves, effects for age=1, age=2, age=3, all

others lumped (4+)
others lumped (4+)

Time effect on capture probability considered fixed (due to variable effective effort)

Time effect on capture probability considered fixed (due to variable effective effort)

Individual Catachability (Gotcha[i]) considered random N(0, epsilon^2) in the logistic

Individual Catachability (Gotcha[i]) considered random N(0, epsilon^2) in the logistic

Time effect on survival (eta[t]) considered random N(0, sigma^2) in the logistic

Time effect on survival (eta[t]) considered random N(0, sigma^2) in the logistic

\#---
\#---
model {
model {
epsilon ~ dunif(0.01, 10) \#\# prior on standard deviation of catchability
epsilon ~ dunif(0.01, 10) \#\# prior on standard deviation of catchability
omega<- 1/(epsilon*epsilon) \#\# precision for use in jags/bugs
omega<- 1/(epsilon*epsilon) \#\# precision for use in jags/bugs
for (i in 1:(M))
for (i in 1:(M))
{
{
Gotcha[i]~dnorm(0,omega) \#\# prior on random catchability of individuals
Gotcha[i]~dnorm(0,omega) \#\# prior on random catchability of individuals
}
}
\# Priors and constraints
\# Priors and constraints
sigma~dunif(0.001,10) \#\# prior for sd of random year effect on phi
sigma~dunif(0.001,10) \#\# prior for sd of random year effect on phi
tau<-1/(sigma*sigma)
tau<-1/(sigma*sigma)
\#\#\#\# for pcap, female becomes the intercept and is the value sex at t=0 or 2000
\#\#\#\# for pcap, female becomes the intercept and is the value sex at t=0 or 2000
pie~dbeta(5,5) \#\# prior for sex
pie~dbeta(5,5) \#\# prior for sex
Alpha0~dunif(-5,5) \#\# Prior on Capture intercept

```
    Alpha0~dunif(-5,5) ## Prior on Capture intercept
```

```
    AlphaAge~dunif(-5, 5) ## Prior on Capture juveniles
    AlphaSex~ dunif(-5,5) ## Prior for intecepts rate
    AlphaTime[1]<-0
    AlphaTime[2]<-0
    for (t in 3:(n.occasions-1)) {
    AlphaTime[t]~dunif(-5,5) ## this is the fixed time effect on pcap model
    }
    # for survival parameters
    for (t in 1:(n.occasions-1)){
    gamma[t] ~ dunif(0, 1) # Prior for entry probabilities
    } #t
    eta[1]<-0 #### can only have entry at step 2, so ps[1,i,1,x] does not depend on phi
    for (t in 2:(n.occasions-1)){
    eta[t]-dnorm(0,tau)
    } #t
    b0 ~ dunif(-5,5)
    BetaSex ~ dunif(-5, 5) # Priors for male sex effects on survival
    BetaAge[1] <- 0 # reference category is calves (Age=1 in input)
    for (i in 2:6) {
    BetaAge[i] ~ dunif(-5, 5) # Categorical effect of each age(1,..,4+) but (Age=2,\ldots,5 in
input)
    } #i
########## Probability models
    for (i in 1:M){
    sex[i] dbern(pie)
    for (t in 1:(n.occasions-1)){
        logit(pcap[i,t])<- Alpha0 + AlphaSex*(sex[i]) + AlphaAge*(1-Adult[i,t]) + AlphaTime[t] +
Gotcha[i]
            logit(phi[i,t]) <- b0 + BetaAge[Age[i,t]] + BetaSex*(1-sex[i])*Adult[i,t] + eta[t]
    } #t for time
    } #i for individual
    # Define state-transition and observation matrices
for (i in 1:M){
    # Define probabilities of state S(t+1) given S(t)
    for (t in 1:(n.occasions-1)){
        ps[1,i,t,1] <- 1-gamma[t] ## Probability of no entry
        ps[1,i,t,2] <- gamma[t] ## Probability of entry
        ps[1,i,t,3]<- 0 ## Must enter BEFORE death so Probability = 0
        ps[2,i,t,1]<- 0 ## Once in stay until death
        ps[2,i,t,2] <- phi[i,t] ## Probability of survival
```

```
    ps[2,i,t,3] <- 1-phi[i,t] ## Probability of death
    ps[3,i,t,1] <- 0 ## Dead is forever
    ps[3,i,t,2] <- 0 ## Dead is forever
    ps[3,i,t,3]<-1 ## Dead is forever!
    # Define probabilities of O(t) given S(t)
    po[1,i,t,1] <- 0 ## If not entered then cannot be caught
    po[1,i,t,2] <- 1
    po[2,i,t,1] <- pcap[i,t] ## If Alive this is probability of capture
    po[2,i,t,2] <- 1-pcap[i,t]
    po[3,i,t,1] <- 0 ## If Dead cannot be caught
    po[3,i,t,2] <- 1
    } #t
    }#i
        # for logistic parameters
    for (t in 2:(n.occasions-1)){
        pcapFA[t-1] <- 1 / (1+exp(-Alpha0 - AlphaTime[t])) # Back-transformed recapture
of females
    pcapMA[t-1] <- 1 / (1+exp(-Alpha0 - AlphaSex- AlphaTime[t])) # Back-transformed
recapture of males
    pcapFJ[t-1] <- 1 / (1+exp(-Alpha0 - AlphaAge - AlphaTime[t])) # Back-transformed
recapture of juv females
    pcapMJ[t-1] <- 1 / (1+exp(-Alpha0 - AlphaAge - AlphaSex- AlphaTime[t])) # Back-
transformed recapture of juv males
    phi01[t-1] <- 1 / (1+exp(-b0-eta[t]))
    phi11[t-1] <- 1 / (1+exp(-b0-BetaAge[2]-eta[t])) # Back-transformed survival of
yearlings
    phi21[t-1] <- 1 / (1+exp(-b0-BetaAge[3]-eta[t])) # Back-transformed survival of
2-year-olds
    phi31[t-1] <- 1 / (1+exp(-b0-BetaAge[4]-eta[t])) # Back-transformed survival of
3-year-olds
    phi41[t-1] <- 1 / (1+exp(-b0-BetaAge[5]-eta[t])) # Back-transformed survival of
3-year-olds
    phiaf[t-1] <- 1 / (1+exp(-b0-BetaAge[6]-eta[t])) # Back-transformed survival of
adult females
    phiam[t-1] <- 1 / (1+exp(-b0-BetaSex-BetaAge[6]-eta[t])) # Back-transformed survival
of adult males
    }
# Likelihood
for (i in 1:M){
    # Define latent state at first occasion ... in BPA this is always 1, but for HUWH we have prior
data about any individuals
    z[i,1] <- 1 # Make sure that all M individuals are in state 1 at t=1
    for (t in 2:n.occasions){
```

```
    # State process: draw S(t) given S(t-1)
    z[i,t] ~ dcat(ps[z[i,t-1], i, t-1,])
        # Observation process: draw O(t) given S(t)
        y[i,t] ~ dcat(po[z[i,t], i, t-1,])
        } #t
    }#i
# Calculate derived population parameters
for (t in 1:(n.occasions-1)){
    qgamma[t] <- 1-gamma[t]
    }
cprob[1] <- gamma[1] ###### BPA parameterization
for (t in 2:(n.occasions-1)){
    cprob[t] <- gamma[t] * prod(qgamma[1:(t-1)])
    } #t
psi <- sum(cprob[]) # Inclusion probability
for (t in 1:(n.occasions-1)){
    b[t] <- cprob[t] / psi # Entry probability
    } #t
for (i in 1:M){
    for (t in 2:n.occasions){
        al[i,t-1] <- equals(z[i,t], 2)
        alm[i,t-1]<- al[i,t-1]*sex[i]
        alf[i,t-1]<- al[i,t-1]*(1-sex[i])
# al[i,t-1] <- ifelse(z[i,t]=2,1,0)
            } #t
        for (t in 1:(n.occasions-1)){
            d[i,t] <- equals(z[i,t]-al[i,t],0)
            } #t
        alive[i] <- sum(al[i,])
        }#i
for (t in 1:(n.occasions-1)){
    N[t] <- sum(al[,t]) # Actual population size
    NF[t] <- sum(alf[,t])
    NM[t] <- sum(alm[,t])
    B[t] <- sum(d[,t]) # Number of entries
        } #t
for (t in 1:(n.occasions-2)){
        D[t]<- N[t]-N[t+1] + B[t] ### Number dying
    }
    for (i in 1:M){
    w[i] <- 1-equals(alive[i],0)
    } #i
# Nsuper <- sum(w[1:M]) # Superpopulation size
    }
```


[^0]: ${ }^{1} 81$ FR 62260, https://www.gpo.gov/fdsys/pkg/FR-2016-09-08/pdf/2016-21276.pdf

